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Cellular automata have been extensively used in the modeling of complexity. In biological phenomena
complexity is directly related to the intuitive concept of diversity, which manifests itself in several forms.
Particularly, the game Life [E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays (Academic, New York, 1982), Vol. 2] may be viewed as a picture of nonlinear open
biological systems acting cooperatively. However, it has been shown that, in Life, diversity (defined in
terms of different clusters) decreases with time. We derive an alternative game introducing the concept
of a propitious environment which confers longevity to live sites in time evolution. It is shown that the
game self-organizes in a configuration of maximum diversity exhibiting a high geometrical complexity.
This game is considered in one dimension and has some connections with the unidimensional Life.

PACS number(s): 05.70.Ln, 05.40.+j, 87.10.+¢

It is rather remarkable to see how really simple cellular
automata models may simulate a great variety of complex
phenomena [1] which are very difficult to approach ex-
tensively with usual analytical techniques. Such “games”
are well known for the richness of properties they
present, ranging from the purely geometrical to the com-
putational level, and have been used to understand at
least metaphorically essential features of real biological
processes. In this context the game Life invented by
Conway [2,3] offers attractive connections such as the ex-
istence of propagating and self-reproducing structures. It
is famous for its capacity to generate very complex
configurations from a few simple rules. Earlier attempts
to study Life were restricted to taxonomic classification,
where one looks for specific forms capable of executing
definite tasks. With its local properties understood to a
certain extent, recently some attention has been devoted
to the investigation of Life as an universe of globally in-
teracting clusters [4-7]. Bak, Chen, and Creutz have
suggested [5] that Life would evolve to a self-organized
critical state. Their results would reinforce the image of
Life as a biological model. However, Bennet and Bour-
zutschky carried some experiments [8] which seemed to
contradict Bak and collaborators’ results. The question
has proven controversial and is not defined yet [9)].
Another very interesting elaboration is the one-
dimensional version of Life proposed by Millen (1GL)
[10,11]. This game incorporates all essential features of
Conway’s version (2GL) and so may be considered as a
valid construction with the advantage of low dimen-
sionality. Computational implementations on relatively
large lattices are then possible. From now on, when say-
ing Life we will be referring indistinctly to the 1GL or
2GL. The 1GL is defined on a lattice of L sites s;,
i=1,...,L, with possible states 1 (live site) or O (disoc-
cupied site), whose fate is determined by the four nearest
neighbors and the following rules: (i) a disoccupied site
(0) with either two or three live neighbors will be occu-
pied (0— 1, birth) in the next generation; (ii) a live site (1)
with either two or four live neighbors will survive in the
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next generation, otherwise it will die (1—0). Local prop-
erties of the 1GL are very similar to those of the 2GL
[10]. From a global point of view there are some
differences but the qualitative behavior is also very simi-
lar [12]. In all that follows we will be thinking of Life as
a model for interacting populations in some evolutionary
universe. As the rules are applied animals are created
and animals disappear so that after a long time the most
fit populations and animals will remain. Obviously, Life
understood as a model is only pictorial and must not be
taken so far. We will always bear this in mind when com-
paring real phenomena with results from Life.

A distinguishing characteristic of real life is its fas-
cinating diversity, which is manifested in many different
ways. Diversity and complexity are intimately related.
In fact, diversity is a major feature of biological phenom-
ena and expresses in an intuitive way the extreme variety
of behavior found in nature. By using a simple model of
diversity Sales et al. [7] were able to investigate and
derive interesting properties of the fauna in Life. This
physically appealing idea successfully applied in the con-
text of fragmentation [13-16], yields the somewhat frus-
trating result that, in Life, diversity is a decreasing func-
tion of time. It was noticed that for any initial
configuration of the game it always evolved decreasing
diversity, whereas it has been observed [17,18] that real
life tends to maximize diversity. Here we introduce an
alternative game which solves this question and is more
physically reasonable as a biological picture. Consider a
lattice populated of beings that can live or die as in a Life
game. The constraints defining a birth can be modeled in
many possible ways. On the other hand, differently from
Life, the environment may turn out to be favorable to live
sites and they exist for an average lifetime T, indepen-
dent of their neighborhood. This longevity can be for-
mally expressed by the probability distribution P(?) giv-
ing the chance that a live site will still be alive at time
step t. Generally P(¢) may assume an arbitrary depen-
dence on time so that (7)=T, We choose here our
rules in the following way: (i) a disoccupied site (0) with
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either two or three live neighbors will be occupied in the
next generation (birth); (ii) a live site (1) will die in the
next generation with constant probability, irrespective of
its neighborhood. Note that the birth rule is the same as
in 1GL. The important noise component introduced by
this alternative game solves a major deficiency in Life
considered as a model, which is that it is a deterministic
game, while biological processes, especially evolutionary
ones, have a strong factor of indeterminism.

Probably the best way to probe the evolution of our
model is through computer simulations. It is possible,
however, to develop some basic calculations on a mean-
field level in the same spirit of those conducted by Schul-
man and Seiden [4]. If s/ denotes the state of site i at time
t, then its state at time ¢ + 1 will be given by

ir1 |8 [2,2’s’]+8 [3,2%’] if s/=0
sitl=

0 with probability 1—P(¢) if s/=1, W
where the prime on the summation indicates that only
the four nearest neighbors are to be considered. 8(i,j) is
the Kronecker delta; 8(i,j)=1 when i =j and O other-
wise. The macroscopic density p is expressed by
p,=3,;{s!)/N. If at time t =0 an uncorrelated random
distribution of live and disoccupied sites yelding a density
po is given we may write based on simple combinatorial
considerations that

pr+1=2p7(1—p)(3—p)[1—P(t)p,]+P(t)p, . (2)

This equation is exactly correct only for £ =1 but it may
give some general trends about the evolution of density.
In what follows we concentrate in the case where T
tends to infinity, or simply P(¢)=1, so that the environ-
ment provides condition for long lifetimes. As a result,
Eq. (2) will be written as

pr+1=p,(—2p{+10p]—14p}+6p,+1) , (3)

which has three fixed points: O (stable), 0.276 48 (unsta-
ble), and 1 (stable). Every configuration with initial occu-
pation lower than 0.276 48 would evolve to complete ex-
tinction, while a higher density would lead to complete
population of the Universe. As it is clear from the state-
ment of the game the fixed points O and 1 do exist but
from computer simulations we have found that the unsta-
ble point 0.27648 is not present and furthermore the
fixed point O is unstable. As we could expect, since all in-
dividuals are very healthy any not too small, initial densi-
ty should lead to a high populational density. This was
indeed found and the results are shown in Fig. 1. Note
that, differently from Life [6], where in the region of in-
teresting initial densities the asymptotic population does
not retain any information of p,, in our model history is
somehow encoded in the t — o states.

As in Ref. [7], diversity is defined in terms of cluster
size. A cluster is a set of live sites connected by a
nearest-neighbor relation. Diversity is then the number
of different clusters found in the system at a given time.
This can be made more explicit by saying that if »(s,¢)
denotes the number of clusters of size s at time ¢ than the
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FIG. 1. Asymptotic populational density p,, as a function of
initial random density po. A total of 20 experiments in a lattice
of 10° available sites were performed in each case.

diversity A(¢)=13.0[n(s,t)], with 8(x)=1 for x >0 and O
otherwise. This definition of diversity is particularly ap-
propriate for computational implementations and suit-
able for problems defined on a lattice. With the high den-
sities attained by the game as shown in Fig. 1 one could
expect low values of diversity. Nevertheless, we see in
Fig. 2 that as ¢ increases the system goes from a condition
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FIG. 2. Typical evolution of diversity in time for the model
described in the text (O) and for the unidimensional Life (OJ).
The curves shown refer specifically to po=0.2 and L=2X 10°.
An arbitrary normalization is introduced in the time axis to al-
low a clear comparison of both cases, while the diversity is nor-
malized by the maximum diversity value A,, exhibited by the
system. The time scales of the unidimensional Life for reaching
stable configurations are about 10? times greater than that in
our model.
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of lower to higher diversity. For comparison we include
a curve illustrating the typical dependence of diversity
with time in the 1GL (a similar comparison can be made
with the 2GL [7]). As a consequence, our model is able
to account for the idea that in an evolutionary environ-
ment the best fit will survive with high probability and
yet high biodiversity will result.

Another quantity that may be measured is the cluster
population denoted by N(t). Define N;=N(1) and
N_,=N(t— ) and also A;=A(1) and A_ =A(t— ),
where ¢t =1 means the first time the dynamical rules are
applied from an initial random configuration at # =0 and
A is the maximal diversity state. From numerical simu-
lations in lattices of sizes up to L =10° we have found
that

=2/ @

is a constant and equals 1.000%0.022 independent of ini-
tial state or lattice size. We call € the population-
diversity parameter. We believe that € may satisfy such a
simple relation even when the site lifetime is finite as long
as it is not too small. This turns out to be a remarkable
fact because for the type of automata discussed here the
time evolution may lead to rather unpredictable struc-
tures. The fact that some quantity link in a very definite
way initial and long-term states may be very useful be-
cause one would need not to carry extensive simulations
of the game to learn some information a priori.

We have shown previously that as the rules are applied
initial random states converge to equilibrium
configurations with high mass density (>0.91). As a
consequence it is not surprising that the fractal dimen-
sion D of the system is equal to 1. However, combined
with great occupancy one finds maximum diversity. This
means that the system organizes itself so as to yield a
high level of complexity even if it tends to overpopula-
tion. It is possible to conclude that the structure of
“gaps” (disoccupied sites separating clusters) are nonuni-
formly distributed such that the requirement
massiveness-diversity is satisfied. We have found that the
gaps determine a geometric multifractal [19] in the limit
of t— o by calculating the generalized dimensions D
defined from the scaling relation {(m(R)/m ., )rlg
~(R/L )(q_”D", where m (R) gives the number of disoc-
cupied sites within a radius R centered on a point of the
gap structure and m,=L(1—p,). The brackets ()
denote an average over randomly chosen center points.
The curve D, vs g is shown in Fig. 3 for lattices of size
L =105

In conclusion, we have presented an alternative unidi-
mensional game, which may be useful as a metaphor for
biological phenomena, especially population dynamics
and evolution. Only the unidimensional case was con-
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FIG. 3. Generalized dimensions D, vs g for the geometric
distribution of gaps separating clusters in the time of maximum
diversity.

sidered here although extension to higher dimensionality
seems straightforward albeit computationally demanding.
Live and disoccupied sites are defined on a line and births
can occur from definite fixed neighborhood relations. A
stochastic factor affecting births can also be introduced
but we have disregarded such complication in the present
approach. Each live site has a longevity characterized by
a probability distribution P(¢) yielding an average life-
time T, possibly independent of neighborhood. The
same birth rule of Millen’s unidimensional version of Life
was chosen. In the case where P(t)=8(2,3!s/ 1)
+8(4,3!s! 1), Life dynamics is recovered. For general
longevity functions the local properties of our model may
be very different from Life in that no stable structures ex-
ist in average for a time greater than T, and propagating
animals have a limited range of action (“mortal gliders™).
We have analyzed the case where P(t) is a constant and
the site lifetime is large, showing that the game evolved
to final configurations of maximum diversity and high
geometrical complexity. Also, the cluster population and
its diversity may be very simply related through the pa-
rameter € connecting initial and asymptotic states.
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